Network Working Group S. Waldbusser
Request for Comments: 1513 Carnegie Mellon University
Updates: 1271 September 1993
Token Ring Extensions to the Remote Network Monitoring MIB
Status of this Memo
This RFC specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" for the standardization state and status
of this protocol. Distribution of this memo is unlimited.
Abstract
This memo defines extensions to the Remote Network Monitoring MIB for
managing 802.5 Token Ring networks.
The Remote Network Monitoring MIB, RFC 1271, defines a framework for
remote monitoring functions implemented on a network probe. That MIB
defines objects broken down into nine functional groups. Some of
those functional groups, the statistics and the history groups, have
a view of the data-link layer that is specific to the media type and
require specific objects to be defined for each media type. RFC 1271
defined those specific objects necessary for Ethernet. This
companion memo defines those specific objects necessary for Token
Ring LANs.
In addition, this memo defines some additional monitoring functions
specifically for Token Ring. These are defined in the Ring Station
Group, the Ring Station Order Group, the Ring Station Configuration
Group, and the Source Routing Statistics Group.
Table of Contents
1. The Network Management Framework ...................... 2
2. Guidelines for implementing RFC1271 objects on a
Token Ring network .................................... 3
2.1 Host Group ........................................... 3
2.2 Matrix Group ......................................... 3
2.3 Filter Group ......................................... 3
2.4 Other comments ....................................... 4
3. Overview of the RMON Token Ring Extensions MIB ........ 4
3.1 The Token Ring Statistics Groups ..................... 4
3.2 The Token Ring History Groups ........................ 5
3.3 The Token Ring Ring Station Group .................... 5
Waldbusser [Page 1]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
3.4 The Token Ring Ring Station Order Group .............. 5
3.5 The Token Ring Ring Station Config Group ............. 5
3.6 The Token Ring Source Routing Group .................. 5
4. Terminology ........................................... 5
5. Definitions ........................................... 6
5.1 The Token Ring Mac-Layer Statistics Group ............ 6
5.2 The Token Ring Promiscuous Statistics Group .......... 14
5.3 The Token Ring Mac-Layer History Group ............... 19
5.4 The Token Ring Promiscuous History Group ............. 27
5.5 The Token Ring Ring Station Group .................... 32
5.6 The Token Ring Ring Station Order Group .............. 41
5.7 The Token Ring Ring Station Config Group ............. 43
5.8 The Token Ring Source Routing Group .................. 47
6. References ............................................ 54
7. Acknowledgments ....................................... 55
8. Security Considerations ............................... 55
9. Author's Address ...................................... 55
1. The Network Management Framework
The Internet-standard Network Management Framework consists of three
components. They are:
STD 16, RFC 1155 [1] which defines the SMI, the mechanisms used
for describing and naming objects for the purpose of management.
STD 16, RFC 1212 [2] defines a more concise description mechanism,
which is wholly consistent with the SMI.
STD 17, RFC 1213 [3] which defines MIB-II, the core set of managed
objects for the Internet suite of protocols.
STD 15, RFC 1157 [4] which defines the SNMP, the protocol used for
network access to managed objects.
The Framework permits new objects to be defined for the purpose of
experimentation and evaluation.
Managed objects are accessed via a virtual information store, termed
the Management Information Base or MIB. Within a given MIB module,
objects are defined using STD 16, RFC 1212's OBJECT-TYPE macro. At a
minimum, each object has a name, a syntax, an access-level, and an
implementation-status.
The name is an object identifier, an administratively assigned name,
which specifies an object type. The object type together with an
object instance serves to uniquely identify a specific instantiation
of the object. For human convenience, we often use a textual string,
termed the object descriptor, to also refer to the object type.
Waldbusser [Page 2]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
The syntax of an object type defines the abstract data structure
corresponding to that object type. The ASN.1[5] language is used for
this purpose. However, STD 16, RFC 1155 purposely restricts the
ASN.1 constructs which may be used. These restrictions are
explicitly made for simplicity.
The access-level of an object type defines whether it makes "protocol
sense" to read and/or write the value of an instance of the object
type. (This access-level is independent of any administrative
authorization policy.)
The implementation-status of an object type indicates whether the
object is mandatory, optional, obsolete, or deprecated.
2. Guidelines for implementing RFC1271 objects on a Token
Ring network
Wherever a MacAddress is to be used in this MIB the source routing
bit is stripped off. The resulting address will be consistently
valid for all packets sent by a particular node.
2.1. Host Group
Only Token Ring isolating errors will increment the error counter for
a particular hostEntry. The isolating errors are: LineErrors,
BurstErrors, ACErrors, InternalErrors, and AbortErrors. ACErrors
will increment the error counter only for the nearest upstream
neighbor of the station reporting the error. LineErrors and
BurstErrors will increment the error counters for the station
reporting the error and its neighbor upstream neighbor.
InternalErrors and AbortErrors will increment the error counter for
the station reporting the error only. In addition, congestionErrors
will also be counted for each hostEntry. These errors will be
incremented in the host entry of the station that reports the errors
in an error report frame.
The hostOutPkts and hostOutOctets counters shall not be incremented
for packets with errors.
2.2. Matrix Group
Error counters are never incremented.
2.3. Filter Group
The following conditions make up the status bitmask for token ring
networks:
Waldbusser [Page 3]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
bit # Error
3 First packet after some packets were dropped
4 Packet with the Frame Copied Bit set
5 Packet with the Address Recognized Bit set
For the purpose of the packet match algorithm, the filters assume a
32 byte RIF field. Thus, when matching, the filter is compared to
the packet starting at the AC byte of the packet, until the end of
the RIF field; then the unused RIF bytes in the filter are skipped
and matching proceeds from that point. Any filter "care" bits in the
RIF that don't correspond to bytes in the input packet will cause the
filter to fail.
2.4. Other comments
Because soft error report packets may be sent with assured delivery,
some errors may be accidently reported twice on devices that perform
the RMON function promiscuously.
3. Overview of the RMON Token Ring Extensions MIB
The Remote Network Monitoring MIB, RFC 1271, defines a framework for
remote monitoring functions implemented on a network probe. That MIB
defines objects broken down into nine functional groups. Some of
those functional groups, the statistics and the history groups, have
a view of the data-link layer that is specific to the media type and
require specific objects to be defined for each media type. RFC 1271
defined those specific objects necessary for Ethernet. This MIB
defines contains four groups that define those specific objects
necessary for Token Ring LANs.
In addition, this memo defines some additional monitoring functions
specifically for Token Ring. These are defined in the Ring Station
Group, the Ring Station Order Group, the Ring Station Configuration
Group, and the Source Routing Statistics Group.
3.1. The Token Ring Statistics Groups
The Token Ring statistics groups contain current utilization and
error statistics. The statistics are broken down into two groups,
the Token Ring Mac-Layer Statistics Group and the Token Ring
Promiscuous Statistics Group. The Token Ring Mac-Layer Statistics
Group collects information from Mac Layer, including error reports
for the ring and ring utilization of the Mac Layer. The Token Ring
Promiscuous Statistics Group collects utilization statistics from
data packets collected promiscuously.
Waldbusser [Page 4]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
3.2. The Token Ring History Groups
The Token Ring History Groups contain historical utilization and
error statistics. The statistics are broken down into two groups,
the Token Ring Mac-Layer History Group and the Token Ring Promiscuous
History Group. The Token Ring Mac-Layer History Group collects
information from Mac Layer, including error reports for the ring and
ring utilization of the Mac Layer. The Token Ring Promiscuous
History Group collects utilization statistics from data packets
collected promiscuously.
3.3. The Token Ring Ring Station Group
The Token Ring Ring Station Group contains statistics and status
information associated with each Token Ring station on the local
ring. In addition, this group provides status information for each
ring being monitored.
3.4. The Token Ring Ring Station Order Group
The Token Ring Ring Station Order Group provides the order of the
stations on monitored rings.
3.5. The Token Ring Ring Station Config Group
The Token Ring Ring Station Config Group manages token ring stations
through active means. Any station on a monitored ring may be removed
or have configuration information downloaded from it.
3.6. The Token Ring Source Routing Group
The Token Ring Source Routing Group contains utilization statistics
derived from source routing information optionally present in token
ring packets.
4. Terminology
The 802.5 specification [7] defines the term "good frame" as a frame
that is bounded by a valid SD and ED, is an integral number of octets
in length, is composed of only 0 and 1 bits between the SD and the
ED, has the FF bits of the GC field equal to 00 or 01, has a valid
FCS, and has a minimum of 18 octets between the SD and the ED. This
document will use the term "good frame" in the same manner.
Waldbusser [Page 5]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
5. Definitions
TOKEN-RING-RMON-MIB DEFINITIONS ::= BEGIN
IMPORTS
Counter, TimeTicks FROM RFC1155-SMI
OBJECT-TYPE FROM RFC-1212
OwnerString, EntryStatus, -- Textual Conventions
rmon, statistics, history
FROM RFC1271-MIB;
-- All representations of MAC addresses in this MIB
-- Module use, as a textual convention (i.e. this
-- convention does not affect their encoding), the
-- data type:
MacAddress ::= OCTET STRING (SIZE (6)) -- a 6 octet
-- address in
-- the "canonical"
-- order
-- defined by IEEE 802.1a, i.e., as if it were
-- transmitted least significant bit first, even though
-- 802.5 (in contrast to other 802.x protocols) requires
-- MAC addresses to be transmitted most significant bit
-- first.
TimeInterval ::= INTEGER
-- A period of time, measured in units of 0.01 seconds.
-- This MIB module uses the extended OBJECT-TYPE macro as
-- defined in [2].
-- Token Ring Remote Network Monitoring MIB
tokenRing OBJECT IDENTIFIER ::= { rmon 10 }
-- The Token Ring Mac-Layer Statistics Group
--
-- Implementation of this group is optional
tokenRingMLStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingMLStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of Mac-Layer Token Ring statistics
Waldbusser [Page 6]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
entries."
::= { statistics 2 }
tokenRingMLStatsEntry OBJECT-TYPE
SYNTAX TokenRingMLStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of Mac-Layer statistics kept for a
particular Token Ring interface."
INDEX { tokenRingMLStatsIndex }
::= { tokenRingMLStatsTable 1 }
-- As an example, an instance of the
-- tokenRingMLStatsMacOctets object
-- might be named tokenRingMLStatsMacOctets.1
TokenRingMLStatsEntry ::= SEQUENCE {
tokenRingMLStatsIndex INTEGER,
tokenRingMLStatsDataSource OBJECT IDENTIFIER,
tokenRingMLStatsDropEvents Counter,
tokenRingMLStatsMacOctets Counter,
tokenRingMLStatsMacPkts Counter,
tokenRingMLStatsRingPurgeEvents Counter,
tokenRingMLStatsRingPurgePkts Counter,
tokenRingMLStatsBeaconEvents Counter,
tokenRingMLStatsBeaconTime TimeInterval,
tokenRingMLStatsBeaconPkts Counter,
tokenRingMLStatsClaimTokenEvents Counter,
tokenRingMLStatsClaimTokenPkts Counter,
tokenRingMLStatsNAUNChanges Counter,
tokenRingMLStatsLineErrors Counter,
tokenRingMLStatsInternalErrors Counter,
tokenRingMLStatsBurstErrors Counter,
tokenRingMLStatsACErrors Counter,
tokenRingMLStatsAbortErrors Counter,
tokenRingMLStatsLostFrameErrors Counter,
tokenRingMLStatsCongestionErrors Counter,
tokenRingMLStatsFrameCopiedErrors Counter,
tokenRingMLStatsFrequencyErrors Counter,
tokenRingMLStatsTokenErrors Counter,
tokenRingMLStatsSoftErrorReports Counter,
tokenRingMLStatsRingPollEvents Counter,
tokenRingMLStatsOwner OwnerString,
tokenRingMLStatsStatus EntryStatus
}
Waldbusser [Page 7]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLStatsIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies this
tokenRingMLStats entry."
::= { tokenRingMLStatsEntry 1 }
tokenRingMLStatsDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of the data
that this tokenRingMLStats entry is configured to
analyze. This source can be any tokenRing
interface on this device. In order to identify a
particular interface, this object shall identify
the instance of the ifIndex object, defined in
MIB-II [3], for the desired interface. For
example, if an entry were to receive data from
interface #1, this object would be set to
ifIndex.1.
The statistics in this group reflect all error
reports on the local network segment attached to
the identified interface.
This object may not be modified if the associated
tokenRingMLStatsStatus object is equal to
valid(1)."
::= { tokenRingMLStatsEntry 2 }
tokenRingMLStatsDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets were
dropped by the probe due to lack of resources.
Note that this number is not necessarily the
number of packets dropped; it is just the number
of times this condition has been detected. This
value is the same as the corresponding
tokenRingPStatsDropEvents."
::= { tokenRingMLStatsEntry 3 }
Waldbusser [Page 8]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLStatsMacOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data in MAC packets
(excluding those that were not good frames)
received on the network (excluding framing bits
but including FCS octets)."
::= { tokenRingMLStatsEntry 4 }
tokenRingMLStatsMacPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MAC packets (excluding
packets that were not good frames) received."
::= { tokenRingMLStatsEntry 5 }
tokenRingMLStatsRingPurgeEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring enters
the ring purge state from normal ring state. The
ring purge state that comes in response to the
claim token or beacon state is not counted."
::= { tokenRingMLStatsEntry 6 }
tokenRingMLStatsRingPurgePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ring purge MAC packets
detected by probe."
::= { tokenRingMLStatsEntry 7 }
tokenRingMLStatsBeaconEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring enters a
beaconing state (beaconFrameStreamingState,
beaconBitStreamingState,
Waldbusser [Page 9]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
beaconSetRecoveryModeState, or
beaconRingSignalLossState) from a non-beaconing
state. Note that a change of the source address
of the beacon packet does not constitute a new
beacon event."
::= { tokenRingMLStatsEntry 8 }
tokenRingMLStatsBeaconTime OBJECT-TYPE
SYNTAX TimeInterval
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total amount of time that the ring has been
in the beaconing state."
::= { tokenRingMLStatsEntry 9 }
tokenRingMLStatsBeaconPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of beacon MAC packets detected
by the probe."
::= { tokenRingMLStatsEntry 10 }
tokenRingMLStatsClaimTokenEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring enters
the claim token state from normal ring state or
ring purge state. The claim token state that
comes in response to a beacon state is not
counted."
::= { tokenRingMLStatsEntry 11 }
tokenRingMLStatsClaimTokenPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of claim token MAC packets
detected by the probe."
::= { tokenRingMLStatsEntry 12 }
Waldbusser [Page 10]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLStatsNAUNChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of NAUN changes detected by the
probe."
::= { tokenRingMLStatsEntry 13 }
tokenRingMLStatsLineErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of line errors reported in error
reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 14 }
tokenRingMLStatsInternalErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of adapter internal errors
reported in error reporting packets detected by
the probe."
::= { tokenRingMLStatsEntry 15 }
tokenRingMLStatsBurstErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of burst errors reported in
error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 16 }
tokenRingMLStatsACErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AC (Address Copied) errors
reported in error reporting packets detected by
the probe."
::= { tokenRingMLStatsEntry 17 }
Waldbusser [Page 11]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLStatsAbortErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of abort delimiters reported in
error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 18 }
tokenRingMLStatsLostFrameErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of lost frame errors reported in
error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 19 }
tokenRingMLStatsCongestionErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of receive congestion errors
reported in error reporting packets detected by
the probe."
::= { tokenRingMLStatsEntry 20 }
tokenRingMLStatsFrameCopiedErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frame copied errors reported
in error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 21 }
tokenRingMLStatsFrequencyErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frequency errors reported in
error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 22 }
Waldbusser [Page 12]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLStatsTokenErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of token errors reported in
error reporting packets detected by the probe."
::= { tokenRingMLStatsEntry 23 }
tokenRingMLStatsSoftErrorReports OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of soft error report frames
detected by the probe."
::= { tokenRingMLStatsEntry 24 }
tokenRingMLStatsRingPollEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ring poll events detected by
the probe (i.e. the number of ring polls initiated
by the active monitor that were detected)."
::= { tokenRingMLStatsEntry 25 }
tokenRingMLStatsOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { tokenRingMLStatsEntry 26 }
tokenRingMLStatsStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this tokenRingMLStats entry."
::= { tokenRingMLStatsEntry 27 }
Waldbusser [Page 13]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
-- The Token Ring Promiscuous Statistics Group
--
-- Implementation of this group is optional
tokenRingPStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingPStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of promiscuous Token Ring statistics
entries."
::= { statistics 3 }
tokenRingPStatsEntry OBJECT-TYPE
SYNTAX TokenRingPStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of promiscuous statistics kept for
non-MAC packets on a particular Token Ring
interface."
INDEX { tokenRingPStatsIndex }
::= { tokenRingPStatsTable 1 }
-- As an example, an instance of the
-- tokenRingPStatsDataOctets object
-- might be named tokenRingPStatsDataOctets.1
TokenRingPStatsEntry ::= SEQUENCE {
tokenRingPStatsIndex INTEGER,
tokenRingPStatsDataSource OBJECT IDENTIFIER,
tokenRingPStatsDropEvents Counter,
tokenRingPStatsDataOctets Counter,
tokenRingPStatsDataPkts Counter,
tokenRingPStatsDataBroadcastPkts Counter,
tokenRingPStatsDataMulticastPkts Counter,
tokenRingPStatsDataPkts18to63Octets Counter,
tokenRingPStatsDataPkts64to127Octets Counter,
tokenRingPStatsDataPkts128to255Octets Counter,
tokenRingPStatsDataPkts256to511Octets Counter,
tokenRingPStatsDataPkts512to1023Octets Counter,
tokenRingPStatsDataPkts1024to2047Octets Counter,
tokenRingPStatsDataPkts2048to4095Octets Counter,
tokenRingPStatsDataPkts4096to8191Octets Counter,
tokenRingPStatsDataPkts8192to18000Octets Counter,
tokenRingPStatsDataPktsGreaterThan18000Octets Counter,
tokenRingPStatsOwner OwnerString,
tokenRingPStatsStatus EntryStatus
Waldbusser [Page 14]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
}
tokenRingPStatsIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies this
tokenRingPStats entry."
::= { tokenRingPStatsEntry 1 }
tokenRingPStatsDataSource OBJECT-TYPE
SYNTAX OBJECT IDENTIFIER
ACCESS read-write
STATUS mandatory
DESCRIPTION
"This object identifies the source of the data
that this tokenRingPStats entry is configured to
analyze. This source can be any tokenRing
interface on this device. In order to identify a
particular interface, this object shall identify
the instance of the ifIndex object, defined in
MIB-II [3], for the desired interface. For
example, if an entry were to receive data from
interface #1, this object would be set to
ifIndex.1.
The statistics in this group reflect all non-MAC
packets on the local network segment attached to
the identified interface.
This object may not be modified if the associated
tokenRingPStatsStatus object is equal to
valid(1)."
::= { tokenRingPStatsEntry 2 }
tokenRingPStatsDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets were
dropped by the probe due to lack of resources.
Note that this number is not necessarily the
number of packets dropped; it is just the number
of times this condition has been detected. This
value is the same as the corresponding
tokenRingMLStatsDropEvents"
Waldbusser [Page 15]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
::= { tokenRingPStatsEntry 3 }
tokenRingPStatsDataOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data in good frames
received on the network (excluding framing bits
but including FCS octets) in non-MAC packets."
::= { tokenRingPStatsEntry 4 }
tokenRingPStatsDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of non-MAC packets in good
frames. received."
::= { tokenRingPStatsEntry 5 }
tokenRingPStatsDataBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were directed to an LLC broadcast address
(0xFFFFFFFFFFFF or 0xC000FFFFFFFF)."
::= { tokenRingPStatsEntry 6 }
tokenRingPStatsDataMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were directed to a local or global multicast
or functional address. Note that this number does
not include packets directed to the broadcast
address."
::= { tokenRingPStatsEntry 7 }
tokenRingPStatsDataPkts18to63Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
Waldbusser [Page 16]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
"The total number of good non-MAC frames received
that were between 18 and 63 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 8 }
tokenRingPStatsDataPkts64to127Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 64 and 127 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 9 }
tokenRingPStatsDataPkts128to255Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 128 and 255 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 10 }
tokenRingPStatsDataPkts256to511Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 256 and 511 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 11 }
tokenRingPStatsDataPkts512to1023Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 512 and 1023 octets in length
inclusive, excluding framing bits but including
FCS octets."
Waldbusser [Page 17]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
::= { tokenRingPStatsEntry 12 }
tokenRingPStatsDataPkts1024to2047Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 1024 and 2047 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 13 }
tokenRingPStatsDataPkts2048to4095Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 2048 and 4095 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 14 }
tokenRingPStatsDataPkts4096to8191Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 4096 and 8191 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 15 }
tokenRingPStatsDataPkts8192to18000Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were between 8192 and 18000 octets in length
inclusive, excluding framing bits but including
FCS octets."
::= { tokenRingPStatsEntry 16 }
tokenRingPStatsDataPktsGreaterThan18000Octets OBJECT-TYPE
SYNTAX Counter
Waldbusser [Page 18]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
that were greater than 18000 octets in length,
excluding framing bits but including FCS octets."
::= { tokenRingPStatsEntry 17 }
tokenRingPStatsOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { tokenRingPStatsEntry 18 }
tokenRingPStatsStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this tokenRingPStats entry."
::= { tokenRingPStatsEntry 19 }
-- The Token Ring History Groups
-- When an entry in the historyControlTable is created that
-- identifies a token ring interface as its
-- historyControlDataSource, the probe shall create
-- corresponding entries in the tokenRingMLHistoryTable
-- and/or the tokenRingPHistoryTable, depending on which
-- groups it supports.
-- The Token Ring Mac-Layer History Group
--
-- Implementation of this group is optional.
-- Implementation of this group requires implementation of
-- the historyControl group from RFC1271.
tokenRingMLHistoryTable OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingMLHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of Mac-Layer Token Ring statistics
Waldbusser [Page 19]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
entries."
::= { history 3 }
tokenRingMLHistoryEntry OBJECT-TYPE
SYNTAX TokenRingMLHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of Mac-Layer statistics kept for a
particular Token Ring interface."
INDEX { tokenRingMLHistoryIndex,
tokenRingMLHistorySampleIndex }
::= { tokenRingMLHistoryTable 1 }
-- As an example, an instance of the
-- tokenRingMLHistoryMacOctets
-- object might be named tokenRingMLHistoryMacOctets.1.27
TokenRingMLHistoryEntry ::= SEQUENCE {
tokenRingMLHistoryIndex INTEGER,
tokenRingMLHistorySampleIndex INTEGER,
tokenRingMLHistoryIntervalStart TimeTicks,
tokenRingMLHistoryDropEvents Counter,
tokenRingMLHistoryMacOctets Counter,
tokenRingMLHistoryMacPkts Counter,
tokenRingMLHistoryRingPurgeEvents Counter,
tokenRingMLHistoryRingPurgePkts Counter,
tokenRingMLHistoryBeaconEvents Counter,
tokenRingMLHistoryBeaconTime TimeInterval,
tokenRingMLHistoryBeaconPkts Counter,
tokenRingMLHistoryClaimTokenEvents Counter,
tokenRingMLHistoryClaimTokenPkts Counter,
tokenRingMLHistoryNAUNChanges Counter,
tokenRingMLHistoryLineErrors Counter,
tokenRingMLHistoryInternalErrors Counter,
tokenRingMLHistoryBurstErrors Counter,
tokenRingMLHistoryACErrors Counter,
tokenRingMLHistoryAbortErrors Counter,
tokenRingMLHistoryLostFrameErrors Counter,
tokenRingMLHistoryCongestionErrors Counter,
tokenRingMLHistoryFrameCopiedErrors Counter,
tokenRingMLHistoryFrequencyErrors Counter,
tokenRingMLHistoryTokenErrors Counter,
tokenRingMLHistorySoftErrorReports Counter,
tokenRingMLHistoryRingPollEvents Counter,
tokenRingMLHistoryActiveStations INTEGER
}
Waldbusser [Page 20]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLHistoryIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The history of which this entry is a part. The
history identified by a particular value of this
index is the same history as identified by the
same value of historyControlIndex."
::= { tokenRingMLHistoryEntry 1 }
tokenRingMLHistorySampleIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies the particular
Mac-Layer sample this entry represents among all
Mac-Layer samples associated with the same
historyControlEntry. This index starts at 1 and
increases by one as each new sample is taken."
::= { tokenRingMLHistoryEntry 2 }
tokenRingMLHistoryIntervalStart OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the start of the
interval over which this sample was measured. If
the probe keeps track of the time of day, it
should start the first sample of the history at a
time such that when the next hour of the day
begins, a sample is started at that instant. Note
that following this rule may require the probe to
delay collecting the first sample of the history,
as each sample must be of the same interval. Also
note that the sample which is currently being
collected is not accessible in this table until
the end of its interval."
::= { tokenRingMLHistoryEntry 3 }
tokenRingMLHistoryDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets were
Waldbusser [Page 21]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
dropped by the probe due to lack of resources
during this sampling interval. Note that this
number is not necessarily the number of packets
dropped, it is just the number of times this
condition has been detected."
::= { tokenRingMLHistoryEntry 4 }
tokenRingMLHistoryMacOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data in MAC packets
(excluding those that were not good frames)
received on the network during this sampling
interval (excluding framing bits but including FCS
octets)."
::= { tokenRingMLHistoryEntry 5 }
tokenRingMLHistoryMacPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of MAC packets (excluding those
that were not good frames) received during this
sampling interval."
::= { tokenRingMLHistoryEntry 6 }
tokenRingMLHistoryRingPurgeEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring entered
the ring purge state from normal ring state during
this sampling interval. The ring purge state that
comes from the claim token or beacon state is not
counted."
::= { tokenRingMLHistoryEntry 7 }
tokenRingMLHistoryRingPurgePkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of Ring Purge MAC packets
detected by the probe during this sampling
Waldbusser [Page 22]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
interval."
::= { tokenRingMLHistoryEntry 8 }
tokenRingMLHistoryBeaconEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring enters a
beaconing state (beaconFrameStreamingState,
beaconBitStreamingState,
beaconSetRecoveryModeState, or
beaconRingSignalLossState) during this sampling
interval. Note that a change of the source
address of the beacon packet does not constitute a
new beacon event."
::= { tokenRingMLHistoryEntry 9 }
tokenRingMLHistoryBeaconTime OBJECT-TYPE
SYNTAX TimeInterval
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The amount of time that the ring has been in the
beaconing state during this sampling interval."
::= { tokenRingMLHistoryEntry 10 }
tokenRingMLHistoryBeaconPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of beacon MAC packets detected
by the probe during this sampling interval."
::= { tokenRingMLHistoryEntry 11 }
tokenRingMLHistoryClaimTokenEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of times that the ring enters
the claim token state from normal ring state or
ring purge state during this sampling interval.
The claim token state that comes from the beacon
state is not counted."
::= { tokenRingMLHistoryEntry 12 }
Waldbusser [Page 23]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLHistoryClaimTokenPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of claim token MAC packets
detected by the probe during this sampling
interval."
::= { tokenRingMLHistoryEntry 13 }
tokenRingMLHistoryNAUNChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of NAUN changes detected by the
probe during this sampling interval."
::= { tokenRingMLHistoryEntry 14 }
tokenRingMLHistoryLineErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of line errors reported in error
reporting packets detected by the probe during
this sampling interval."
::= { tokenRingMLHistoryEntry 15 }
tokenRingMLHistoryInternalErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of adapter internal errors
reported in error reporting packets detected by
the probe during this sampling interval."
::= { tokenRingMLHistoryEntry 16 }
tokenRingMLHistoryBurstErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of burst errors reported in
error reporting packets detected by the probe
during this sampling interval."
::= { tokenRingMLHistoryEntry 17 }
Waldbusser [Page 24]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingMLHistoryACErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AC (Address Copied) errors
reported in error reporting packets detected by
the probe during this sampling interval."
::= { tokenRingMLHistoryEntry 18 }
tokenRingMLHistoryAbortErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of abort delimiters reported in
error reporting packets detected by the probe
during this sampling interval."
::= { tokenRingMLHistoryEntry 19 }
tokenRingMLHistoryLostFrameErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of lost frame errors reported in
error reporting packets detected by the probe
during this sampling interval."
::= { tokenRingMLHistoryEntry 20 }
tokenRingMLHistoryCongestionErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of receive congestion errors
reported in error reporting packets detected by
the probe during this sampling interval."
::= { tokenRingMLHistoryEntry 21 }
tokenRingMLHistoryFrameCopiedErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frame copied errors reported
in error reporting packets detected by the probe
during this sampling interval."
Waldbusser [Page 25]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
::= { tokenRingMLHistoryEntry 22 }
tokenRingMLHistoryFrequencyErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frequency errors reported in
error reporting packets detected by the probe
during this sampling interval."
::= { tokenRingMLHistoryEntry 23 }
tokenRingMLHistoryTokenErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of token errors reported in
error reporting packets detected by the probe
during this sampling interval."
::= { tokenRingMLHistoryEntry 24 }
tokenRingMLHistorySoftErrorReports OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of soft error report frames
detected by the probe during this sampling
interval."
::= { tokenRingMLHistoryEntry 25 }
tokenRingMLHistoryRingPollEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of ring poll events detected by
the probe during this sampling interval."
::= { tokenRingMLHistoryEntry 26 }
tokenRingMLHistoryActiveStations OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The maximum number of active stations on the ring
detected by the probe during this sampling
Waldbusser [Page 26]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
interval."
::= { tokenRingMLHistoryEntry 27}
-- The Token Ring Promiscuous History Group
--
-- Implementation of this group is optional.
-- Implementation of this group requires the implementation
-- of the historyControl group from RFC1271.
tokenRingPHistoryTable OBJECT-TYPE
SYNTAX SEQUENCE OF TokenRingPHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of promiscuous Token Ring statistics
entries."
::= { history 4 }
tokenRingPHistoryEntry OBJECT-TYPE
SYNTAX TokenRingPHistoryEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of promiscuous statistics kept for a
particular Token Ring interface."
INDEX { tokenRingPHistoryIndex,
tokenRingPHistorySampleIndex }
::= { tokenRingPHistoryTable 1 }
-- As an example, an instance of the
-- tokenRingPHistoryDataPkts object
-- might be named tokenRingPHistoryDataPkts.1.27
TokenRingPHistoryEntry ::= SEQUENCE {
tokenRingPHistoryIndex INTEGER,
tokenRingPHistorySampleIndex INTEGER,
tokenRingPHistoryIntervalStart TimeTicks,
tokenRingPHistoryDropEvents Counter,
tokenRingPHistoryDataOctets Counter,
tokenRingPHistoryDataPkts Counter,
tokenRingPHistoryDataBroadcastPkts Counter,
tokenRingPHistoryDataMulticastPkts Counter,
tokenRingPHistoryDataPkts18to63Octets Counter,
tokenRingPHistoryDataPkts64to127Octets Counter,
tokenRingPHistoryDataPkts128to255Octets Counter,
tokenRingPHistoryDataPkts256to511Octets Counter,
tokenRingPHistoryDataPkts512to1023Octets Counter,
Waldbusser [Page 27]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingPHistoryDataPkts1024to2047Octets Counter,
tokenRingPHistoryDataPkts2048to4095Octets Counter,
tokenRingPHistoryDataPkts4096to8191Octets Counter,
tokenRingPHistoryDataPkts8192to18000Octets Counter,
tokenRingPHistoryDataPktsGreaterThan18000Octets Counter
}
tokenRingPHistoryIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The history of which this entry is a part. The
history identified by a particular value of this
index is the same history as identified by the
same value of historyControlIndex."
::= { tokenRingPHistoryEntry 1 }
tokenRingPHistorySampleIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"An index that uniquely identifies the particular
sample this entry represents among all samples
associated with the same historyControlEntry.
This index starts at 1 and increases by one as
each new sample is taken."
::= { tokenRingPHistoryEntry 2 }
tokenRingPHistoryIntervalStart OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the start of the
interval over which this sample was measured. If
the probe keeps track of the time of day, it
should start the first sample of the history at a
time such that when the next hour of the day
begins, a sample is started at that instant. Note
that following this rule may require the probe to
delay collecting the first sample of the history,
as each sample must be of the same interval. Also
note that the sample which is currently being
collected is not accessible in this table until
the end of its interval."
::= { tokenRingPHistoryEntry 3 }
Waldbusser [Page 28]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingPHistoryDropEvents OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of events in which packets were
dropped by the probe due to lack of resources
during this sampling interval. Note that this
number is not necessarily the number of packets
dropped, it is just the number of times this
condition has been detected."
::= { tokenRingPHistoryEntry 4 }
tokenRingPHistoryDataOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets of data in good frames
received on the network (excluding framing bits
but including FCS octets) in non-MAC packets
during this sampling interval."
::= { tokenRingPHistoryEntry 5 }
tokenRingPHistoryDataPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval."
::= { tokenRingPHistoryEntry 6 }
tokenRingPHistoryDataBroadcastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were directed
to an LLC broadcast address (0xFFFFFFFFFFFF or
0xC000FFFFFFFF)."
::= { tokenRingPHistoryEntry 7 }
tokenRingPHistoryDataMulticastPkts OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
Waldbusser [Page 29]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were directed
to a local or global multicast or functional
address. Note that this number does not include
packets directed to the broadcast address."
::= { tokenRingPHistoryEntry 8 }
tokenRingPHistoryDataPkts18to63Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between 18
and 63 octets in length inclusive, excluding
framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 9 }
tokenRingPHistoryDataPkts64to127Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between 64
and 127 octets in length inclusive, excluding
framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 10 }
tokenRingPHistoryDataPkts128to255Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
128 and 255 octets in length inclusive, excluding
framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 11 }
tokenRingPHistoryDataPkts256to511Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
Waldbusser [Page 30]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
256 and 511 octets in length inclusive, excluding
framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 12 }
tokenRingPHistoryDataPkts512to1023Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
512 and 1023 octets in length inclusive, excluding
framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 13 }
tokenRingPHistoryDataPkts1024to2047Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
1024 and 2047 octets in length inclusive,
excluding framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 14 }
tokenRingPHistoryDataPkts2048to4095Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
2048 and 4095 octets in length inclusive,
excluding framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 15 }
tokenRingPHistoryDataPkts4096to8191Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
4096 and 8191 octets in length inclusive,
excluding framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 16 }
Waldbusser [Page 31]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
tokenRingPHistoryDataPkts8192to18000Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were between
8192 and 18000 octets in length inclusive,
excluding framing bits but including FCS octets."
::= { tokenRingPHistoryEntry 17 }
tokenRingPHistoryDataPktsGreaterThan18000Octets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good non-MAC frames received
during this sampling interval that were greater
than 18000 octets in length, excluding framing
bits but including FCS octets."
::= { tokenRingPHistoryEntry 18 }
-- The Token Ring Ring Station Group
--
-- Implementation of this group is optional
--
-- Although the ringStationTable stores entries only for
-- those stations physically attached to the local ring and
-- the number of stations attached to a ring is limited, a
-- probe may still need to free resources when resources
-- grow tight. In such a situation, it is suggested that
-- the probe free only inactive stations, and to
-- first free the stations that have been inactive for the
-- longest time.
ringStationControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of ringStation table control entries."
::= { tokenRing 1 }
ringStationControlEntry OBJECT-TYPE
SYNTAX RingStationControlEntry
ACCESS not-accessible
STATUS mandatory
Waldbusser [Page 32]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
DESCRIPTION
"A list of parameters that set up the discovery of
stations on a particular interface and the
collection of statistics about these stations."
INDEX { ringStationControlIfIndex }
::= { ringStationControlTable 1 }
-- As an example, an instance of the
-- ringStationControlIfIndex object
-- might be named ringStationControlIfIndex.1
RingStationControlEntry ::= SEQUENCE {
ringStationControlIfIndex INTEGER,
ringStationControlTableSize INTEGER,
ringStationControlActiveStations INTEGER,
ringStationControlRingState INTEGER,
ringStationControlBeaconSender MacAddress,
ringStationControlBeaconNAUN MacAddress,
ringStationControlActiveMonitor MacAddress,
ringStationControlOrderChanges Counter,
ringStationControlOwner OwnerString,
ringStationControlStatus EntryStatus
}
ringStationControlIfIndex OBJECT-TYPE
SYNTAX INTEGER (1..65535)
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
interface on this remote network monitoring device
from which ringStation data is collected. The
interface identified by a particular value of this
object is the same interface as identified by the
same value of the ifIndex object, defined in MIB-
II [3]."
::= { ringStationControlEntry 1 }
ringStationControlTableSize OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of ringStationEntries in the
ringStationTable associated with this
ringStationControlEntry."
::= { ringStationControlEntry 2 }
Waldbusser [Page 33]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
ringStationControlActiveStations OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of active ringStationEntries in the
ringStationTable associated with this
ringStationControlEntry."
::= { ringStationControlEntry 3 }
ringStationControlRingState OBJECT-TYPE
SYNTAX INTEGER {
normalOperation(1),
ringPurgeState(2),
claimTokenState(3),
beaconFrameStreamingState(4),
beaconBitStreamingState(5),
beaconRingSignalLossState(6),
beaconSetRecoveryModeState(7)
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The current status of this ring."
::= { ringStationControlEntry 4 }
ringStationControlBeaconSender OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The address of the sender of the last beacon
frame received by the probe on this ring. If no
beacon frames have been received, this object
shall be equal to six octets of zero."
::= { ringStationControlEntry 5 }
ringStationControlBeaconNAUN OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The address of the NAUN in the last beacon frame
received by the probe on this ring. If no beacon
frames have been received, this object shall be
equal to six octets of zero."
::= { ringStationControlEntry 6 }
Waldbusser [Page 34]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
ringStationControlActiveMonitor OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The address of the Active Monitor on this
segment. If this address is unknown, this object
shall be equal to six octets of zero."
::= { ringStationControlEntry 7 }
ringStationControlOrderChanges OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of add and delete events in the
ringStationOrderTable optionally associated with
this ringStationControlEntry."
::= { ringStationControlEntry 8 }
ringStationControlOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { ringStationControlEntry 9 }
ringStationControlStatus OBJECT-TYPE
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this ringStationControl entry.
If this object is not equal to valid(1), all
associated entries in the ringStationTable shall
be deleted by the agent."
::= { ringStationControlEntry 10 }
ringStationTable OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of ring station entries. An entry will
exist for each station that is now or has
Waldbusser [Page 35]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
previously been detected as physically present on
this ring."
::= { tokenRing 2 }
ringStationEntry OBJECT-TYPE
SYNTAX RingStationEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for a particular
station that has been discovered on a ring
monitored by this device."
INDEX { ringStationIfIndex, ringStationMacAddress }
::= { ringStationTable 1 }
-- As an example, an instance of the
-- ringStationStationStatus object might be named
-- ringStationStationStatus.1.16.0.90.0.64.131
RingStationEntry ::= SEQUENCE {
ringStationIfIndex INTEGER,
ringStationMacAddress MacAddress,
ringStationLastNAUN MacAddress,
ringStationStationStatus INTEGER,
ringStationLastEnterTime TimeTicks,
ringStationLastExitTime TimeTicks,
ringStationDuplicateAddresses Counter,
ringStationInLineErrors Counter,
ringStationOutLineErrors Counter,
ringStationInternalErrors Counter,
ringStationInBurstErrors Counter,
ringStationOutBurstErrors Counter,
ringStationACErrors Counter,
ringStationAbortErrors Counter,
ringStationLostFrameErrors Counter,
ringStationCongestionErrors Counter,
ringStationFrameCopiedErrors Counter,
ringStationFrequencyErrors Counter,
ringStationTokenErrors Counter,
ringStationInBeaconErrors Counter,
ringStationOutBeaconErrors Counter,
ringStationInsertions Counter
}
ringStationIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
Waldbusser [Page 36]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
DESCRIPTION
"The value of this object uniquely identifies the
interface on this remote network monitoring device
on which this station was detected. The interface
identified by a particular value of this object is
the same interface as identified by the same value
of the ifIndex object, defined in MIB-II [3]."
::= { ringStationEntry 1 }
ringStationMacAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this station."
::= { ringStationEntry 2 }
ringStationLastNAUN OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of last known NAUN of this
station."
::= { ringStationEntry 3 }
ringStationStationStatus OBJECT-TYPE
SYNTAX INTEGER {
active(1), -- actively participating in ring poll.
inactive(2), -- Not participating in ring poll
forcedRemoval(3) -- Forced off ring by network
-- management.
}
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The status of this station on the ring."
::= { ringStationEntry 4 }
ringStationLastEnterTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time this station
last entered the ring. If the time is unknown,
this value shall be zero."
::= { ringStationEntry 5 }
Waldbusser [Page 37]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
ringStationLastExitTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time the probe
detected that this station last exited the ring.
If the time is unknown, this value shall be zero."
::= { ringStationEntry 6 }
ringStationDuplicateAddresses OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times this station experienced a
duplicate address error."
::= { ringStationEntry 7 }
ringStationInLineErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of line errors reported by this
station in error reporting packets detected by the
probe."
::= { ringStationEntry 8 }
ringStationOutLineErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of line errors reported in error
reporting packets sent by the nearest active
downstream neighbor of this station and detected
by the probe."
::= { ringStationEntry 9 }
ringStationInternalErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of adapter internal errors
reported by this station in error reporting
packets detected by the probe."
Waldbusser [Page 38]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
::= { ringStationEntry 10 }
ringStationInBurstErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of burst errors reported by this
station in error reporting packets detected by the
probe."
::= { ringStationEntry 11 }
ringStationOutBurstErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of burst errors reported in
error reporting packets sent by the nearest active
downstream neighbor of this station and detected
by the probe."
::= { ringStationEntry 12 }
ringStationACErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of AC (Address Copied) errors
reported in error reporting packets sent by the
nearest active downstream neighbor of this station
and detected by the probe."
::= { ringStationEntry 13 }
ringStationAbortErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of abort delimiters reported by
this station in error reporting packets detected
by the probe."
::= { ringStationEntry 14 }
ringStationLostFrameErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
Waldbusser [Page 39]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
DESCRIPTION
"The total number of lost frame errors reported by
this station in error reporting packets detected
by the probe."
::= { ringStationEntry 15 }
ringStationCongestionErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of receive congestion errors
reported by this station in error reporting
packets detected by the probe."
::= { ringStationEntry 16 }
ringStationFrameCopiedErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frame copied errors reported
by this station in error reporting packets
detected by the probe."
::= { ringStationEntry 17 }
ringStationFrequencyErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frequency errors reported by
this station in error reporting packets detected
by the probe."
::= { ringStationEntry 18 }
ringStationTokenErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of token errors reported by this
station in error reporting frames detected by the
probe."
::= { ringStationEntry 19 }
ringStationInBeaconErrors OBJECT-TYPE
SYNTAX Counter
Waldbusser [Page 40]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of beacon frames sent by this
station and detected by the probe."
::= { ringStationEntry 20 }
ringStationOutBeaconErrors OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of beacon frames detected by the
probe that name this station as the NAUN."
::= { ringStationEntry 21 }
ringStationInsertions OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The number of times the probe detected this
station inserting onto the ring."
::= { ringStationEntry 22 }
-- The Token Ring Ring Station Order Group
--
-- Implementation of this group is optional
--
-- The ringStationOrderTable
ringStationOrderTable OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationOrderEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of ring station entries for stations in
the ring poll, ordered by their ring-order."
::= { tokenRing 3 }
ringStationOrderEntry OBJECT-TYPE
SYNTAX RingStationOrderEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for a particular
Waldbusser [Page 41]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
station that is active on a ring monitored by this
device. This table will contain information for
every interface that has a
ringStationControlStatus equal to valid."
INDEX { ringStationOrderIfIndex,
ringStationOrderOrderIndex }
::= { ringStationOrderTable 1 }
-- As an example, an instance of the
-- ringStationOrderMacAddress object might be named
-- ringStationOrderMacAddress.1.14
RingStationOrderEntry ::= SEQUENCE {
ringStationOrderIfIndex INTEGER,
ringStationOrderOrderIndex INTEGER,
ringStationOrderMacAddress MacAddress
}
ringStationOrderIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
interface on this remote network monitoring device
on which this station was detected. The interface
identified by a particular value of this object is
the same interface as identified by the same value
of the ifIndex object, defined in MIB-II [3]."
::= { ringStationOrderEntry 1 }
ringStationOrderOrderIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"This index denotes the location of this station
with respect to other stations on the ring. This
index is one more than the number of hops
downstream that this station is from the rmon
probe. The rmon probe itself gets the value one."
::= { ringStationOrderEntry 2 }
ringStationOrderMacAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
Waldbusser [Page 42]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
"The physical address of this station."
::= { ringStationOrderEntry 3 }
-- The Token Ring Ring Station Config Group
--
-- Implementation of this group is optional.
-- The ring station config group manages token ring nodes
-- through active means.
ringStationConfigControlTable OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationConfigControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of ring station configuration control
entries."
::= { tokenRing 4 }
ringStationConfigControlEntry OBJECT-TYPE
SYNTAX RingStationConfigControlEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"This entry controls active management of stations
by the probe. One entry exists in this table for
each active station in the ringStationTable."
INDEX { ringStationConfigControlIfIndex,
ringStationConfigControlMacAddress }
::= { ringStationConfigControlTable 1 }
-- As an example, an instance of the
-- ringStationConfigControlRemove object might be named
-- ringStationConfigControlRemove.1.16.0.90.0.64.131
RingStationConfigControlEntry ::= SEQUENCE {
ringStationConfigControlIfIndex INTEGER,
ringStationConfigControlMacAddress MacAddress,
ringStationConfigControlRemove INTEGER,
ringStationConfigControlUpdateStats INTEGER
}
ringStationConfigControlIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
Waldbusser [Page 43]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
interface on this remote network monitoring device
on which this station was detected. The interface
identified by a particular value of this object is
the same interface as identified by the same value
of the ifIndex object, defined in MIB-II [3]."
::= { ringStationConfigControlEntry 1 }
ringStationConfigControlMacAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this station."
::= { ringStationConfigControlEntry 2 }
ringStationConfigControlRemove OBJECT-TYPE
SYNTAX INTEGER {
stable(1),
removing(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Setting this object to `removing(2)' causes a
Remove Station MAC frame to be sent. The agent
will set this object to `stable(1)' after
processing the request."
::= { ringStationConfigControlEntry 3 }
ringStationConfigControlUpdateStats OBJECT-TYPE
SYNTAX INTEGER {
stable(1),
updating(2)
}
ACCESS read-write
STATUS mandatory
DESCRIPTION
"Setting this object to `updating(2)' causes the
configuration information associate with this
entry to be updated. The agent will set this
object to `stable(1)' after processing the
request."
::= { ringStationConfigControlEntry 4 }
Waldbusser [Page 44]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
-- The ringStationConfig Table
--
-- Entries exist in this table after an active
-- configuration query has completed successfully for
-- a station. This query is initiated by the associated
-- ringStationConfigControlUpdateStats variable.
ringStationConfigTable OBJECT-TYPE
SYNTAX SEQUENCE OF RingStationConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of configuration entries for stations on a
ring monitored by this probe."
::= { tokenRing 5 }
ringStationConfigEntry OBJECT-TYPE
SYNTAX RingStationConfigEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of statistics for a particular
station that has been discovered on a ring
monitored by this probe."
INDEX { ringStationConfigIfIndex,
ringStationConfigMacAddress }
::= { ringStationConfigTable 1 }
-- As an example, an instance of the
-- ringStationConfigLocation object might be named
-- ringStationConfigLocation.1.16.0.90.0.64.131
RingStationConfigEntry ::= SEQUENCE {
ringStationConfigIfIndex INTEGER,
ringStationConfigMacAddress MacAddress,
ringStationConfigUpdateTime TimeTicks,
ringStationConfigLocation OCTET STRING,
ringStationConfigMicrocode OCTET STRING,
ringStationConfigGroupAddress OCTET STRING,
ringStationConfigFunctionalAddress OCTET STRING
}
ringStationConfigIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
Waldbusser [Page 45]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
interface on this remote network monitoring device
on which this station was detected. The interface
identified by a particular value of this object is
the same interface as identified by the same value
of the ifIndex object, defined in MIB-II [3]."
::= { ringStationConfigEntry 1 }
ringStationConfigMacAddress OBJECT-TYPE
SYNTAX MacAddress
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The physical address of this station."
::= { ringStationConfigEntry 2 }
ringStationConfigUpdateTime OBJECT-TYPE
SYNTAX TimeTicks
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of sysUpTime at the time this
configuration information was last updated
(completely)."
::= { ringStationConfigEntry 3 }
ringStationConfigLocation OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The assigned physical location of this station."
::= { ringStationConfigEntry 4 }
ringStationConfigMicrocode OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(10))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The microcode EC level of this station."
::= { ringStationConfigEntry 5 }
ringStationConfigGroupAddress OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The low-order 4 octets of the group address
recognized by this station."
Waldbusser [Page 46]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
::= { ringStationConfigEntry 6 }
ringStationConfigFunctionalAddress OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(4))
ACCESS read-only
STATUS mandatory
DESCRIPTION
"the functional addresses recognized by this
station."
::= { ringStationConfigEntry 7 }
-- The Token Ring Source Routing group
--
-- Implementation of this group is optional.
-- The data in this group is collected from the source
-- routing information potentially present in any token ring
-- packet. This information will be valid only in a pure
-- source route bridging environment. In a transparent
-- bridging or a mixed bridging environment, this
-- information may not be accurate.
sourceRoutingStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF SourceRoutingStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A list of source routing statistics entries."
::= { tokenRing 6 }
sourceRoutingStatsEntry OBJECT-TYPE
SYNTAX SourceRoutingStatsEntry
ACCESS not-accessible
STATUS mandatory
DESCRIPTION
"A collection of source routing statistics kept
for a particular Token Ring interface."
INDEX { sourceRoutingStatsIfIndex }
::= { sourceRoutingStatsTable 1 }
-- As an example, an instance of the
-- sourceRoutingStatsInFrames object might be named
-- sourceRoutingStatsInFrames.1
SourceRoutingStatsEntry ::= SEQUENCE {
sourceRoutingStatsIfIndex INTEGER,
sourceRoutingStatsRingNumber INTEGER,
sourceRoutingStatsInFrames Counter,
Waldbusser [Page 47]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
-- in to our net
sourceRoutingStatsOutFrames Counter,
-- out from our net
sourceRoutingStatsThroughFrames Counter,
-- through our net
sourceRoutingStatsAllRoutesBroadcastFrames Counter,
sourceRoutingStatsSingleRouteBroadcastFrames Counter,
sourceRoutingStatsInOctets Counter,
sourceRoutingStatsOutOctets Counter,
sourceRoutingStatsThroughOctets Counter,
sourceRoutingStatsAllRoutesBroadcastOctets Counter,
sourceRoutingStatsSingleRoutesBroadcastOctets Counter,
sourceRoutingStatsLocalLLCFrames Counter,
sourceRoutingStats1HopFrames Counter,
sourceRoutingStats2HopsFrames Counter,
sourceRoutingStats3HopsFrames Counter,
sourceRoutingStats4HopsFrames Counter,
sourceRoutingStats5HopsFrames Counter,
sourceRoutingStats6HopsFrames Counter,
sourceRoutingStats7HopsFrames Counter,
sourceRoutingStats8HopsFrames Counter,
sourceRoutingStatsMoreThan8HopsFrames Counter,
sourceRoutingStatsOwner OwnerString,
sourceRoutingStatsStatus EntryStatus
}
sourceRoutingStatsIfIndex OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The value of this object uniquely identifies the
interface on this remote network monitoring device
on which source routing statistics will be
detected. The interface identified by a
particular value of this object is the same
interface as identified by the same value of the
ifIndex object, defined in MIB-II [3]."
::= { sourceRoutingStatsEntry 1 }
sourceRoutingStatsRingNumber OBJECT-TYPE
SYNTAX INTEGER
ACCESS read-only
STATUS mandatory
DESCRIPTION
Waldbusser [Page 48]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
"The ring number of the ring monitored by this
entry. When any object in this entry is created,
the probe will attempt to discover the ring
number. Only after the ring number is discovered
will this object be created. After creating an
object in this entry, the management station
should poll this object to detect when it is
created. Only after this object is created can
the management station set the
sourceRoutingStatsStatus entry to valid(1)."
::= { sourceRoutingStatsEntry 2 }
sourceRoutingStatsInFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of frames sent into this ring from
another ring."
::= { sourceRoutingStatsEntry 3 }
sourceRoutingStatsOutFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of frames sent from this ring to
another ring."
::= { sourceRoutingStatsEntry 4 }
sourceRoutingStatsThroughFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of frames sent from another ring,
through this ring, to another ring."
::= { sourceRoutingStatsEntry 5 }
sourceRoutingStatsAllRoutesBroadcastFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good frames received that
were All Routes Broadcast."
::= { sourceRoutingStatsEntry 6 }
Waldbusser [Page 49]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
sourceRoutingStatsSingleRouteBroadcastFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of good frames received that
were Single Route Broadcast."
::= { sourceRoutingStatsEntry 7 }
sourceRoutingStatsInOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of octets in good frames sent into this
ring from another ring."
::= { sourceRoutingStatsEntry 8 }
sourceRoutingStatsOutOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of octets in good frames sent from this
ring to another ring."
::= { sourceRoutingStatsEntry 9 }
sourceRoutingStatsThroughOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The count of octets in good frames sent another
ring, through this ring, to another ring."
::= { sourceRoutingStatsEntry 10 }
sourceRoutingStatsAllRoutesBroadcastOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of octets in good frames
received that were All Routes Broadcast."
::= { sourceRoutingStatsEntry 11 }
sourceRoutingStatsSingleRoutesBroadcastOctets OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
Waldbusser [Page 50]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
STATUS mandatory
DESCRIPTION
"The total number of octets in good frames
received that were Single Route Broadcast."
::= { sourceRoutingStatsEntry 12 }
sourceRoutingStatsLocalLLCFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received who had no
RIF field (or had a RIF field that only included
the local ring's number) and were not All Route
Broadcast Frames."
::= { sourceRoutingStatsEntry 13 }
sourceRoutingStats1HopFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 1 hop, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 14 }
sourceRoutingStats2HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 2 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 15 }
sourceRoutingStats3HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
Waldbusser [Page 51]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
"The total number of frames received whose route
had 3 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 16 }
sourceRoutingStats4HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 4 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 17 }
sourceRoutingStats5HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 5 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 18 }
sourceRoutingStats6HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 6 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 19 }
sourceRoutingStats7HopsFrames OBJECT-TYPE
Waldbusser [Page 52]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 7 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 20 }
sourceRoutingStats8HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had 8 hops, were not All Route Broadcast Frames,
and whose source or destination were on this ring
(i.e. frames that had a RIF field and had this
ring number in the first or last entry of the RIF
field)."
::= { sourceRoutingStatsEntry 21 }
sourceRoutingStatsMoreThan8HopsFrames OBJECT-TYPE
SYNTAX Counter
ACCESS read-only
STATUS mandatory
DESCRIPTION
"The total number of frames received whose route
had more than 8 hops, were not All Route Broadcast
Frames, and whose source or destination were on
this ring (i.e. frames that had a RIF field and
had this ring number in the first or last entry of
the RIF field)."
::= { sourceRoutingStatsEntry 22 }
sourceRoutingStatsOwner OBJECT-TYPE
SYNTAX OwnerString
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The entity that configured this entry and is
therefore using the resources assigned to it."
::= { sourceRoutingStatsEntry 23 }
sourceRoutingStatsStatus OBJECT-TYPE
Waldbusser [Page 53]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
SYNTAX EntryStatus
ACCESS read-write
STATUS mandatory
DESCRIPTION
"The status of this sourceRoutingStats entry."
::= { sourceRoutingStatsEntry 24 }
END
6. References
[1] Rose M., and K. McCloghrie, "Structure and Identification of
Management Information for TCP/IP-based internets", STD 16, RFC
1155, Performance Systems International, Hughes LAN Systems, May
1990.
[2] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
STD 16, RFC 1212, Performance Systems International, Hughes LAN
Systems, March 1991.
[3] McCloghrie K., and M. Rose, Editors, "Management Information
Base for Network Management of TCP/IP-based internets", STD 17,
RFC 1213, Performance Systems International, March 1991.
[4] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
Network Management Protocol", STD 15, RFC 1157, SNMP Research,
Performance Systems International, Performance Systems
International, MIT Laboratory for Computer Science, May 1990.
[5] Information processing systems - Open Systems Interconnection -
Specification of Abstract Syntax Notation One (ASN.1),
International Organization for Standardization. International
Standard 8824, December, 1987.
[6] Waldbusser, S., "Remote Network Monitoring Management
Information Base", RFC 1271, CMU, November 1991.
[7] Token Ring Access Method and Physical Layer Specifications,
Institute of Electrical and Electronic Engineers, IEEE Standard
802.5-1989, 1989.
Waldbusser [Page 54]
RFC 1513 Token Ring Extensions to RMON MIB September 1993
7. Acknowledgments
This document was produced by the Token Ring RMON MIB working group.
In addition, the author gratefully acknowledges the comments of the
following individuals:
Andrew Bierman Synoptics
Steve Bostock Novell
Gary Ellis Hewlett-Packard
Mike Erlinger Aerospace Corporation
Robert Graham Protools
Stephen Grau Novell
Carl Hayssen Ungermann-Bass
Jeff Hughes Hewlett-Packard
Robin Iddon AXON Networks
Ken Kutzler Synoptics
To-Choi Lau Novell
Carl Madison Startek
Keith McCloghrie Hughes Lan Systems
Rohit Mital Protools
Keith Schomburg IBM
Marshall Rose Dover Beach Consulting
Mark Therieau Microcom
Mark van der Pol Hughes Lan Systems
Brian Wyld Consultant
8. Security Considerations
Security issues are not discussed in this memo.
9. Author's Address
Steven Waldbusser
Carnegie Mellon University
4910 Forbes Ave.
Pittsburgh, PA 15213
Phone: (412) 268-6628
EMail: waldbusser@cmu.edu
Waldbusser [Page 55]
|